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RECONSTRUCTION OF TURBULENCE SPECTRUM FROM TRANSIENT 

CHARACTERISTICS OF A SHADOW-INSTRUMENT SIGNAL 

Yu. I. Kopilevich UDC 532.507 

With the investigation of turbulence using a shadow instrument with photoelectric 
recording, the statistical characteristics of the signal taken off from the instru- 
ment are used to obtain information on the statistics of the investigated medium 
[I, 2]. In situations where the investigated medium is moving perpendicular to 
the instrument axis (for example, with experiments in hydro- and aerodynamic tubes), 
it is convenient to use the transient characteristics of the signal. In the pres- 
ent article an investigation is made of the connection of the transient correla- 
tion function and the frequency spectrum of a shadow-instrument signal with the 
energy spectrum of the optical inhomogeneities in the medium; a method is given 
for reconstructing the spectrum of the inhomogeneities from the correlation func- 
tion or the transient spectrum of the signal. 

w Connection between the Correlation Function of the Signal and the Fourth Moment of the 
Light Field 

The general scheme of the shadow instrument is given in Fig. i. A coherent monochromatic 
light beam from the illuminator 1 passes through a layer of the investigated medium with 
thickness L, situated between the planes 2 and 3, and is reflected by the lens 4 on its focal 
plane 5. In the plane 5 (the shadow plane) there is a shadow diaphragm; the light passing 
through the shadow plane is collected by the lens 6 and sent to the photomultiplier 7. In 
what follows, by the "instrument signal" we shall understand the intensity of the light fal- 
ling on the photomultiplier (and not the photomultiplier current). 

We introduce the Cartesian coordinates x, y, z in such a way that the z axis will be 
directed along the axis of the light propagation; plane 2 corresponds to z = O, plane 3 to 
z = L. Let u(x, y, L, t) E u(x, t), x = (x, y) be the random distribution of the field at 
the plane 3 at the moment of time t. Then the instantaneous value of the signal of the 
instrument E(t) is [3] 
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2 J 5 

Fig. I 

(i.I) 

where the coordinates ~ = (~, ~) in the plane 5 are connected with the coordinates x = (x, 
y) by the relationship ~ = (2~/kf)x (% is the wavelength of the light; f is the focal dis- 
tance of the lens); X(~)~ is the transmission ~unction of the shadow diaphragm with respect 
to the intensity. For:the correlation function of the deviations in the value of the instru- 
ment signal from its mean value 

K(t~, ~) =_ <(E(ta) -- <E(tO>)(E(t= ) -- <E(ta)>)> 

(the angular brackets denote averaging with respect to the ensemble of the realizations of a 
random medium), from (i. I) we obtain 

K (tl, t2) = (2-~)4 S dxi J dx2 J dx3 ~ dx4 ! d• i d• % (~) X 
( 1 . 2 )  

• e~'(x'-X')ei~'(x~--x')F (xl, x 2. x~, x 6 q ,  t~), 

w h e r e  F ( x ~ ,  x= ,  x~ ,  x~ ;  t ~ ,  t 2 )  ~ F ( x l ~  x 2 ,  x3 ,  x4 ;  t l ,  ~2 )  -- F ( x ~ ,  x= ;  t ~ ) r ( x 3 ,  x u ;  t 2 ) ;  
r(xl, x2, x3, x4; t~, ta) ~'<u(x~, t~)u(x2; t~)u(x3, t=)u(x~, t2)) is the fourth two-time 
moment of the field u in the plane^z = L; F(Xm, Xn; t) E <U(Xm, t)u(xn, t)> is the second 
single-time moment. The quantity r(x~, xa, x~, x4; t:, t=) will be called the centered 
fourth two-time moment of the field at the plane z = L. 

The random field of the optical inhomogeneities in the medium will be assumed station- 
ary; in this case, the single-time moments do not depend on the time, while the two-time 
moments depend only on the modulus Of the difference of their time arguments 

r(x~, x~; tO ~ r ( x .  x~), r(x3, x6 t~) -~ r(x3, x~) 
F(x~, x~, x~, x 6  t~, t~) -~ F(x~, x~, x3, x,;  ~), 

A 

F(xl, x=, x~, x4; tl, t~) ~ F(xl, x~, x~, x 6 x), K(t~, t=) ~- K(~), 
where T = Itl- t2I. 

w Calculation of the Centered Fourth Two-Time Moment of the Light Field 

We use the following postulation with respect to the random medium. The field of the 
dielectric permeability s(r, t), r = (x, y, z) will be assumed to be stationary, statistically 
homogeneous, and isotropic. The fluctuations of the dielectric permeability are assumed to 
be small 

e(r,t)  = <e>(l + e(r ,  t)), :e(r, t ) l<< l ,  

e> is the mean value of the dielectric permeability, which, by virtue of the assumptions 
adopted, does not depend on the coordinates or the time. 

The field uo(x) in the plane 2 is given in the form 

Uo(X) = A exp {--x~/2a2}, 
where a is the effective radius of the beam; A is the amplitude at the axis of the beam. 

We shall also use the usual assumptions 

/ > > ~ ,  a > > ~ ,  l<<L 

where I is the dimension of the smallest homogeneities in the medium. We use the results 
obtained in [4]. It is evident that the expressions of interest to us for the centered 
fourth two-time moment of the light field in the plane 3 can be obtained from the formula 
for the centered fourth single-time moment [4] by replacing the two-dimensional spectrum of 
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the turbulence ~(~) by a two-dimensional Fourier transform #x(~; r) of the transient correla- 
tion function of the fluctuations of the dielectrical permeability 

~(r; ~) - -  e'(O + r, t + ~)g(O, t )>:  

(lh O1; ~) = (2-~ ~ i ~ ~ (r; ~)e~(n:~+~uU)dxdydz. 
- - o o  

Thus, we obtain 

where Vi(x , 
[51; 

(2.1) 

(Xl, X,, X~, X4; g) = rxoo~ -~" ro,,o q- F~o m -]- Fotot --]-'O(z"). ( 2 . 2 )  

r ,,,,.~ - -  <V~(x. t~-v,,,(x~, t)v.(x~, t + ~)~,(x, ,  t + ~)>, 
t) is the i-th term of the Born expansion of the field u(x, t) in the plane 3 

L 

Flool ----~ F~oo ~-~s Sdp ~d~]~l (~];" 0 X 
o 

•  (L--P) ' -=' , } 
k,~ VeTz)I' + ~ (p) x l .  ,I - ~l~,(p) x~ �9 ~ ; (2.3) 

L 
rl~176176176176176 dp dqO, (q; T) X 

I 

0 (2.4) 

kUa21B (L) [a ~ k I B (L) I ------'i 2[- 

+ i~ (p) x~. '1 -- i~ (p) x , .  '1}. 
Fozzo and Foaot are obtained from Fa0oz and Fzo,o, respectively, by an operation of complex 
conjugation and permutation of xz with xa and xa with xd. In (2.3), (2.4), the notation of 
[4] is retained: 

B(z) =--- i + ~:lka', ~(p) ~ B(p)IB(L). 

w Correlation Function and Frequency Spectrum of Shadow Instrument 

Substituting (2.3), (2.4), into (2.2), we obtain the fourth moment F(x~, xa, xs, xd; T). 
Now, from (1.2) we have 

K (~) =[k'A4a a .[id~Ox (~; T) P (~)q (3 .  1) 

where 
L 

t _a . , . ydp l~ t , l . p  ) ~ ( _ n ,  v)12, P(n) = We 
ol 

.pl12 *,, (3.2) 

We find the connection between ~t(n; T) and the two-dimensional spectrum of the turbulence 
~(~) ~ ~,(n; 0) adopting the hypothesis of "frozen turbulence" [6]. In this case 

at(r; ~) ---- <8'(p + r, t + ~)e'(p, t)> = <g(p + r -- vT, 0g(m t) > = ~1(r -- w; 0) 

and from (2.1) it follows 

�9 ~(~; ~) = e i~v~ r (3.3) 

where the orthogonality of v with respect to the z axis is used. Substituting (3.3) into 
(3.1), we obtain 

K (T) = k2Ada 8 ~ (I) 01) p 01) e~nV~d*l �9 (3.4) 

In what follows we shall limit ourselves to the case where the transition function of 
the shadow diaphragm X(X) depends only on the modulus of M: X(M) -- X (~). Under these circum- 
stances, from (3.2) it follows that the function P(n) is also independent of the angle: 
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p(N) e p(q). By virtue of the assumption of the isotropic character of the field of the 
inhomogeneities, the spectrum of @ is a function only of the modulus of N, i.e., @(~) ~ @(q), 
and, in (3.4), we can integrate over the angles. Thus, we obtain 

K (~) = 2nk~A'a ' f ~ (~) p (~) Jo (~v~) ~d~, (3 .5)  
0 

where Jo(z) is a Bessel function of zero-th order. 

Expression (3.5) is a Hankel transform of zero-th order [7] of the function 2~kaAaaS. 
@(q)P(q). We note that the two-dimensional spectrum of @(q) is connected witK the three-di- 
mensional Fourier transform of the correlation function F(q) by the relationship @(q) = 
2~F(q). 

For the frequency spectrum S(o) 

from (3.5) 

of the shadow instrument signal 

S~(v) __~__- t iK(T)e~V~d'~ 
- - o o  

~I d~l, ( 3 . 6 )  

U2 

For the integral trans- 

there follows the expression 

2k~A*a' i 
s ( , )  - 7 ,,,,, a> (n) P (nil-I/--- 

which is an Abel [7] transformation of the function (2k2A"a'/v)@(q)P(q). 
s (3.5), (3.6), there exist inversion formulas 

(~) = v2 [ 2nk2A4a'p (~)1-1 I K (~) Y0 (~vz) ~d~; (3 .7 )  

!C " s '  (,,) ( 3 . 8 )  
cp.Ol)  = - v 2 [ ~ k 2 A 4 a S P  ( ' q ) ] - '  ~ . . . .  d.~. 

Expressions (3.5)-(3.8) give a formal solution to the problem of the reconstitution of the 
spectrum of the turbulence; however, for an actual solution of the problem, the use of one 
or another method of regularization is required [8, 9]. 

We note that in the problem of reconstitution the apparatus function P(q) plays a con- 
siderable role. As an example, let us consider the case of a "Gaussian" shadow diaphragm 

% (• = C{ - -  e -~ 'X ' .  

The function P(~) in (3.5), (3.6) for such a diaphragm, with satisfaction of the conditions 

(L~/P) ~ << l, (L~./al) 2 << t 
i s  equa l  to  

as  L s - -  -4 -  ~4. P (~)  = ~ ~ exp a2~ 2 

The w e i g h t i n g  f u n c t i o n  P(~)~  i s  maximum w i t h  q ,  = ( 1 0 ~ 7 ~ a  -~ 
j u d g e d  from t h e  " h a l f - w i d t h "  

o e  

3 5 
~-- 1,4 a - t .  

= 1.8a -~, whose acuteness can be 

It is clear that the part of the spectrum of the inhomogeneities lying outside the 
interval (~, -- A, q, + A) has no active effect on the functions K(T) and S(~); therefore, 
the reconstitution of this part of the spectrum is impossible. Consequently, the shadow 
instrument parameters (the effective radius of the beam) must be selected depending on the 
region of spectral numbers in which it is desired to establish the energy spectrum of the 
turbulence. 
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EXPERIMENTAL STUDY OF DYNAMICS OF GAS BUBBLES IN A TURBULENT JET 

A. I. Mart'yanov UDC 534~833.53 

In investigating the scattering of ultrasound by turbulent jets for noncontacting flow 
diagnostics, the effect of gas bubbles of various sizes must be taken into account. The 
problem of the evolution of the bubble distribution function in the jet is also of certain 
interest. 

A number of experimental papers have appeared on the study of the free-gas content in 
still water and in a disturbed volume of liquid. Gavrilov [I] describes a method for deter- 
mining the free-gas content based on a measurement of the attenuation of ultrasound, 

In this method the gas content is estimated from the expression 

K t = 6 ,3"  l 0  5 n (Ro):R~, 

where K l is the attenuation factor in dB/m; n(Ro) is the number of bubbles per cm 3 of liquid; 
and Ro is the radius of a bubble. 

We find the gas-bubble distribution function by using the tabulated values [2] of the 
absorption cross section o for bubbles of various sizes. Since the composition of the gas in 
the bubbles is uncertain, the actual and calculated values of the absorption cross section 
differ somewhat. Nevertheless, a knowledge of the frequency dependence of ~ permits a study 
of the variation of the bubble-distribution function along the jet. 

The intensity of an ultrasound wave propagating in a medium containing bubbles varies 
according to the law ~3] 

W (z) = Woc -~R~, (i) 

where W(x) is the wave intensity after penetrating a distance x into the layer with bubbles; 
Wo is the wave intensity at the entrance to the layer; n R is the number density of bubbles of 
radius R; and o R is the absorption cross section of a bubble of radius R. 

It is well known [3] that the absorption of sound energy by a gas bubble is maximum at 
a frequency equal to the resonance frequency of the bubble [4] 
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